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Abstract 

This article proposes an accelerated static hedge portfolio (SHP) method for 

evaluating American options based on stochastic volatility and double jump processes. 

Our proposed model is a generalization of the static hedge portfolio approach of 

Derman, Ergener, and Kani to evaluate American options by utilizing the Richardson 

extrapolation. Numerical results demonstrate that the numerical efficiency of our 

accelerated static hedge portfolio approach is comparable to the least-squares Monte 

Carlo simulation method. Numerical results reveal that our proposed method is 

efficient and accuracy in evaluating American options with stochastic volatility and 

double jump processes.   
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I. Introduction 

Pricing American options is an important problem in the financial research. In 

the past three decades, many studies have provided analytical approximation 

formulae and numerical solution methods to evaluate American options. For example, 

recent numerical approaches include the Monte Carlo simulation methods of Broadie 

and Glasserman (1997) and Longstaff and Schwartz (2001) and the Gaussian 

quadrature integration scheme of Sullivan (2000). Most analytical approximation 

formulae can price American options efficiently under Black-Scholes framework. 

However, the assumption of a lognormal diffusion process is not consistent with 

empirical characteristics of the underlying asset. Since some closed-form solutions 

for European option prices based on the general diffusion processes have been 

derived in recent years, analytical approximation formulae for pricing American 

option should be developed with greater generality.  

Analytical approximations are well documented in the option pricing literature. 

One stream of the American option pricing literature is to utilize the quadratic 

approximation scheme for pricing American option values, see e.g., Barone-Adesi 

and Whaley (1987), Ju and Zhong (1999), Chang, Kang, Kim, and Kim (2007), and 

Guo, Hung, and So (2009). While the above mentioned methods can price American 

options efficiently under the Black-Scholes model, it should be to extend most of 

them to other stochastic processes, e.g. the stochastic volatility models with double 

jump of Duffie, Pan, and Singleton (2000), Guo, Hung, and So (2009), and Chang, 

Guo, and Hung (2016).  

In contrast, the static hedge portfolio (SHP) method proposed in this article is 

not only efficient but also applicable for more general processes beyond the 

Black-Scholes model. Moreover, the hedge problem can be solved at the same time 
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when the static hedge portfolio is found. Static hedge is the approach, developed by 

Bowie and Carr (1994), Derman, Ergener, and Kani (1995), Carr, Ellis, and Gupta 

(1998), for pricing and hedging options. This approach is to create a static portfolio of 

standard European options whose values match the payoff of the option been hedged 

at expiration and along the boundary. In comparison to dynamic hedging, static 

hedging is considerably cheaper than dynamic hedging when the transaction cost is 

large. Dynamic hedging may have substantial hedging errors due to discrete trading, 

see for example Primbs and Yamada (2006). In addition to the previous findings, 

Chung and Shih1 (2009) show that the static hedging approach may also serve as a 

good pricing method for American options. The specific advantage of applying static 

hedge approach to pricing American options is that unlike the numerical methods, the 

computation of the American option price is as easy as the valuations of European 

options because there is no need to solve the static hedge portfolio again and the 

value of the static hedge portfolio is the summation of the European option prices in 

the portfolio. 

Most of the earlier studies listed above are based on the assumption that the 

underlying asset follows a lognormal diffusion process. Nevertheless, the above 

mentioned methods have not developed in conjunction with the rapid growth of 

option pricing models in the stochastic volatility framework. Many empirical studies 

demonstrate that an option pricing model allowing for stochastic volatility and double 

jumps significantly reduces pricing errors, see e.g., Bakshi, Cao, and Chen (1997), 

and Broadie, Chernov, and Johannes (2007). Stochastic volatility and double jumps 

have been proposed as other factors that illustrate the biases in option pricing. These 

empirical studies show the importance of extending the static hedge method for 

 
1 Ruas, Dias, and Nunes (2013) evaluate American-style options through the static hedge approach 

proposed by Chung and Shih (2009) under the jump to default extended CEV (JDCEV) model of Carr 

and Linetsky (2006). 
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pricing American options based on these processes. 

Our static hedge portfolios of American options utilize based on standard 

European options with multiple strikes and multiple maturities, which provided by 

Chung and Shih (2009). The reason for using standard options with multiple strikes 

and multiple maturities is because the early exercise boundary of the American option 

is time variant. Unlike the static hedge of exotic options where the boundary is 

usually known, the static hedge of the American option involves a free boundary 

problem. We solve this problem by using two well-known conditions on the early 

exercise boundary. It is worth noting that value-matching and smooth-pasting 

conditions are widely applied in American option pricing literature. For example, 

Barone-Adesi and Whaley (1987) approximate the early exercise premium of an 

American option with a quadratic function and they applied these two conditions to 

solve the early exercise premium and the critical stock price. At the maturity date, if 

the American option is not exercised earlier, its boundary condition is exactly the 

same as the corresponding European option. Therefore our static hedge portfolio 

starts with one unit of the corresponding European option.  

Huang, Subrahmanyam, and Yu (1996) utilize an accelerated recursive method 

that employs a three-point Richardson extrapolation scheme2 to price American 

options. Chang, Chung, and Stapleton (2007) demonstrate that the modified 

Geske-Johnson formula is a better approximation of the value of American-style 

option, especially for nonstandard American options whose exercise boundary is 

discontinuous. The reason is that the modified Geske–Johnson formula avoids the 

non-uniform convergence problem. Therefore, we employ the Richardson 

 
2 Geske and Johnson (1984) provide an analytical formula for American options with the concept of 

compound options and they make use of a three-point Richardson extrapolation method to evaluate 

American options. By utilizing different extrapolation, the Geske and Johnson method has been 

expanded in a series of articles by Bunch and Johnson (1992), Chung (2002), and Chang and Hung 

(2007).  



5 
 

extrapolation technique to evaluate American options, which can improve the 

computational accuracy for the static hedge method proposed by Chung and Shih 

(2009). 

The goal of this study is to provide an accelerated static hedge method for 

evaluating American options in a general framework that allows for stochastic 

volatility, return jumps, and volatility jumps. Several stochastic volatility models with 

double jump have been widely introduced in the literature. Stochastic volatility 

models with double jumps proposed by Duffie, Pan, and Singleton (2000), Guo, 

Hung, and So (2009), and Chang, Guo, and Hung (2016) are used as examples to 

highlight the generalization of the static hedge portfolio method, followed by a 

comparison with the least-squares Monte Carlo simulation method proposed by 

Longstaff and Schwartz (2001). The numerical results of our comparison show that 

the accelerated static hedge method is accurate and efficient in pricing American 

options based on these diffusion processes. Our proposed model is also applied to 

other stochastic volatility models with jumps. 

The remainder of this article is organized as follows: Section II briefly describes 

the stochastic volatility model with correlated double jumps and the static hedging 

method for other jump models. Section III shows the accelerated static hedging 

method for pricing American options. Section IV compares the accelerated static 

hedging method with the least-squares Monte Carlo simulation approach and the 

quadratic approximation method. Conclusions are presented in Section V. 

 

II. Analytical American Option Approximations for the Stochastic 

Volatility Model with Double Jumps 

    Many previous studies have provided analytical solutions for pricing American 

options, indicating that the American option price can be evaluated as the 
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corresponding European option plus a recursive integration term that represents the 

early exercise premium, see e.g., Bowie and Carr (1994), Derman, Ergener, and Kani 

(1995), Carr, Ellis, and Gupta (1998). The primary expression of the stochastic 

volatility model with double jumps follows the framework of Duffie, Pan, and 

Singleton (2000) and Chang, Guo, and Hung (2016). We show our approach on call 

options. Put options will be treated in a similar way except with different boundary 

conditions.  

Under the risk-neutral measure, the underlying asset price, )(tS , is assumed to 

follow a geometric jump diffusion with the instantaneous conditional variance, ( )V t , 

following a mean-reverting square root jump process: 

( )
( ) ( ) ( )

( )
S

dS t
r q dt V t dZ t

S t
= − + + ( ) ( )ˆ ˆ( 1) ( ) ( 1) ( )x t Q x t

S Se dq t E e dq t − − −              (1)

ˆ( ) ( ( )) ( ) ( ) ( ) ( )V V V vdV t V V t dt V t dZ t v t dq t = − + + , 0t                   (2) 

where the risk-free rate, r , and the continuous dividend yield rate, q , are assumed 

constant. )(tx  represents a percentage jump in the stock price and follows a normal 

distribution, 
2

0 , ,( , )x v x vN v  + , where ( )v t  is a level jump in the volatility and 

follows an exponential distribution, ( )vExponential  . ˆ ( )Sq t  and ˆ ( )Vq t  are two 

correlated Poisson counters with intensity 
,x v . ( )SZ t  and ( )VZ t  are standard 

Brownian motions with cov( ( ), ( ))S VdZ t dZ t dt= . In order to retain the Martingale 

property, the compensator, ( )( )( ) 2

, 0 , ,( 1) ( ) exp[ 0.5 ] 1 1Q x t

S x v x v v x vE e dq t dt     − = + − − 
, 

is subtracted from the stock price process, such that the drift of the stock return rate is 

equal to r q− . 

The price space of American options can be separated into two regions: the 
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exercise region,  *D B S , [0, )t t t      , and the continuous region 

 *0< S B , [0, )t tL t    . *Bt
3 denotes the optimal exercise boundary above which 

the option should be exercised immediately. Within the continuous region, the partial 

integro-differential equation for a contingent claim price, C , on the underlying asset 

is given by: 

          21
0

2
SSC S= V

21

2
VV VC V+

SV VC SV+  

            ,(( ) 1 )x v Q x

SC r q E e S  + − − −  ( )V V TC V V C rC+ − − −  

            
,

0
( , ) ( , ) ( , )x v xC Se V v C S V x v dxdv

 

−
 + + −    .              (3) 

with boundary conditions: 

               ( , , ; ) max ( ) ,0Q rTC S V T K E e S T K− = −    

              
0

lim ( , , ; ) 0
S

C S V t K


=  

              
*

*

B
lim ( , , ; ) B

t

t
S

C S V t K K


= −                                (4) 

              
*B

( )
lim 1

S(t)tS

C t




=


 

The present value of the European call option can be computed by:4 

 ( , , ; ) max ( ) ,0E Q rTC S V T K E e S T K− = −   

log[ ]

0

Im ( ; )1 1
( ; )

2

i KT i e
T i d

 
 

 

  − − = − − 
 

                       

log[ ]

0

Im ( ; )1 1
( ;0)

2

i KT e
K T d

 
 

 

  −  − −
 
 


,    (5) 

where ( ; )T   is the characteristic function of the state density. The characteristic 

 
3 In this case, *Bt

 is not only a free boundary, but also a random process itself. 

4 Based on the closed-form solution for the European call option, the formula for the present value of 

the European put option can be obtained by the put-to-call parity. 
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function is given by 

( ; )T 
  ( )( ; ) ( ; ) iM T N T Y

e S
 +

=
,                              (6) 

where  

( )( ; ) ( )M T i r q r T  − −  

          ( )
( )( )

2

1
2log 1

2

T

V V

V V

V

i eV
i T

   
   

 

−  + − −
  − + − + −
    

 

2
0 ,

1

2
, ,

,

1
1

x v

x v x v

v x v

e
i T T

 

 
 

+ 
 − − −
 − 
 

 

( )
2 2

0 ,

1

, 22
x vi T

x v b e

p

  

 
 

− 
 −

+  

( )
2 2

0 ,

1

, 22 1
log

x vi
x v T

vi i e p qe

pq p q

  
   

−
−−  +

+  
+ 

,        (7) 

( ; )N T  
( )

( )( )

( 1) 1

2 1

T

T

V V

i i e

i e





 

    

−

−

− −

− + − −
             

( )
2 2( 1)V V Vi i i       − − −                   

V Vb i    + −                        

,2 (1 )v x vp i q   − − ,                     

,( 1) (1 )v v x vq i i b i     − + − .              

 

The early exercise boundary has to be determined at the same time when the 

static hedge portfolio is established. We solve the free boundary problem by the 

value-matching and smooth-pasting conditions. At the maturity date T, if the 

American option is not exercised earlier, its terminal condition is exactly the same as 
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the corresponding European option. Therefore, our static hedge portfolio starts with 

one unit of the corresponding European option. Suppose that the static hedge 

portfolio matches the boundary conditions of the American option before maturity at 

n evenly-spaced time points, i.e. 0 1 n-1t   0, t ,. . ., t  T t= = − , where t
T

N
 = . To 

match the unknown exercise boundary Bi  at time t i  (i = 0, 1, . . . , n-1), we add 

w i  units of a standard European option, maturing at time 1t i+  and with a strike 

price equaling Bi , into the static hedge portfolio. We then solve w i  and Bi  using 

the value-matching and smooth-pasting conditions. Similar to the lattice models for 

American options, we work backward to determine the number of the standard 

European options and their strike prices for the above n-point critical exercise price 

1Bn− , the value-matching and smooth-pasting conditions imply that 

1 1 1 1 1 1 1B (B , , t ; ) (B , , t ;B )E E

n n n n n n nK C V T K w C V T− − − − − − −− = − + −             (8) 

1 1 1 1 1 11 (B , , t ; ) (B , , t ;B )E E

S n n n S n n nC V T K w C V T− − − − − −= − + −             (9) 

where EC  and E

SC  are the formulae of the price and delta of European options, 

respectively. 

    Based on Eq.(9), we can obtain that 

1 1
1

1 1 1

1 (B , , t ; )

(B , , t ;B )

E

S n n
n E

S n n n

C V T K
w

C V T

− −
−

− − −

− −
=

−
             (10) 

Substituting Eq. (10) into Eq. (8) leads to a nonlinear equation of 1Bn−  which can be 

solved numerically based on the Newton-Raphson method. Then we have 1nw −  by 

substituting 1Bn−  into Eq. (10). Using similar procedures, we work backward to 

determine the number of units of the standard European option, iw , and its strike 

price, Bi , at time t i , i = n-2, n-3, . . . , 0. Through solving all iw  and Bi  (i = 0, 

1, . . . , n-1), the value of the n-point static hedge portfolio nC  at time 0 is obtained 

as follows: 
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0 1 0 1 2 0 1 2( , , ; ) ( , , ; ) ( , , ; ) .......E E E

n n n n n nC C S V T K w C S V T B w C S V t B− − − − −= + + +  

0 0 1 0( , , ; )Ew C S V t B+                                      (11) 

where the value-matching and smooth-pasting conditions are given in the 

following: 

0 0 1 0 1 2 0 1 2( , , ; ) ( , , ; ) ( , , ; ) .......E E E

n n n n nB K C S V T K w C S V T B w C S V t B− − − − −− = + + +

       
0 0 1 0( , , ; )Ew C S V t B+                                   (12) 

0 1 0 1 2 0 1 21 ( , , ; ) ( , , ; ) ( , , ; ) .......E E E

S n S n n S n nC S V T K w C S V T B w C S V t B− − − − −= + + +  

0 0 1 0( , , ; )E

Sw C S V t B+                                      (13) 

Our pricing model can be easily applied to other famous models, such as those 

developed by Duffie, Pan, and Singleton (2000), Bakshi, Cao, and Chen (1997), and 

Bates (1996). An example considered for an illustration is the model in which 

return-jumps and volatility-jumps are non-simultaneous and independent. Let x  

and v , respectively, denote the arrival rates of the return-jump and the 

volatility-jump. The distribution of the return-jump amplitude is assumed to be: 

                     ( ) 







−+ 22 ,

2

1
1log~)( xxxNtx  ,                 (14) 

and v  follows an exponential distribution, ( )vExponential  . Then, the 

characteristic function of the state density must satisfy: 

21
0

2
SSC S= V

21

2
VV VC V+

SV VC SV+  

(( ) 1 )x Q x

SC r q E e S  + − − −  ( )V V TC V V C rC+ − − −  

 
0

( ) ( ) ( ) ( ) ( ) ( )x x vC Se C S x dx C V v C V v dv 
 

−
 + −  + + −    .   (15)             

where )(x  and ( )v  denote the density functions of x  and v , respectively. 

The characteristic function of Eq. (6) still satisfies Eq. (15). This model is called the 
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stochastic volatility model with independent double jumps. The characteristic 

function of this model is provided in Appendix A. 

 

III. Accelerated Static Hedging Method 

    Once the critical exercise boundary can be obtained numerically by working 

backward using Eq. (12) and (13) for call options, the price of the American option 

under the stochastic volatility model with double jumps can be calculated by Eq. (11). 

In order to be efficient so as to rapidly evaluate American options without 

approximating the whole early exercise boundary, Geske and Johnson (1984) first use 

the three-point Richardson extrapolation to evaluate American options. Huang, 

Subrahmanyam, and Yu (1996) also provide a simple method that utilizes a 

three-point Richardson extrapolation to accelerate the recursive integration method. 

The Richardson extrapolation scheme gains efficiency without sacrificing much 

accuracy.  

Let GJ

nC  be the value of a Bermudan call option considered in Geske and 

Johnson (1984) which can only be exercised at one of the n-exercisable time points: 

t , 2 t ,…, T=n t . It is worth comparing our n-point static hedge portfolio to the 

Bermudan call option with n-exercisable time points. First of all, the values 

1 2 3 4, , , ,...GJ GJ GJ GJC C C C , define a sequence with the limit equaling the American call 

value. Our static hedge portfolio value, nC , is simply the summation of European 

call prices. Based on the geometric-spaced exercise points employed in the modified 

Geske-Johnson method, define 1

GJC  to be the European option value permitting 

exercise only at period T, where T is the maturity of the option, 2

GJC  , the 
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Bermudan-style option value permitting exercise only at period 
2

T
 and T, and 

4

GJC , 

the Bermudan-style option value permitting exercise at period 
4

T
, 

2

4

T
, 

3

4

T
and T 

only. Again, we can apply the Repeated-Richardson extrapolation technique to derive 

one 3-point modified Geske–Johnson formula as follows: 

GJ GJ GJ

4 2 1

8 1
C 2C C

3 3

AC = − +                           (14) 

where 

1 0 0 0 0( , , ; ) ( , , ; )GJ E EC C S V T K C S V T B= +  

2 0 1 0 1 2 0 0( , , ; ) ( , , ; ) ( , , ; )
2

GJ E E E T
C C S V T K C S V T B C S V B = + +    (15) 

4 0 3 0 3 2 0 2 1 0 1 0 0 0

3
( , , ; ) ( , , ; ) ( , , ; ) ( , , ; ) ( , , ; )

4 2 4

GJ E E E E ET T T
C C S V T K C S V T B C S V B C S V B C S V B   = + + + +

 

IV. Numerical Results and Comparisons 

    In order to confirm the accuracy of our proposed method, we compare the 

estimators of the least-square Monte Carlo simulation (LSMC) of Longstaff and 

Schwartz (2001) with those calculated by our proposed analytical formula. Longstaff 

and Schwartz (2001) provide a least-square Monte Carlo approach to evaluate 

American options. Our numerical results provide a comparison of our proposed 

model, the LSMC method, and the quadratic approximation scheme proposed by Guo, 

Hung, and So (2009) for the stochastic volatility models with jumps. The parameters 

reported in Bakshi and Cao (2003) and Guo, Hung, and So (2009) are used to 

compute the numerical results. The least-squares Monte Carlo simulation is based on 

1,000,000 (500,000 plus 500,000 antithetic) paths for the stock price, using 24 

exercise points per year.  
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The accelerated static hedging method, the LSMC method, and the quadratic 

approximation provided by Guo, Hung, and So (2009) are represented by Static 

Hedging American, LSMC American, and BAW American, respectively. The 

standard errors of the simulation estimates (s.e.) are given in parentheses. Static 

Hedging Diff and BAW Diff are defined as the difference between the LSMC 

estimate (i.e. numerical solution) and our estimate, and the difference between the 

LSMC estimate and a quadratic approximation estimator. The sum of the squared 

percentage relative errors (RMS) is defined as 2 2

1

1
( ) /

m

i i i

i

RMS C C C
m =

= − , where iC  

is the option price obtained from the least-squares Monte Carlo method, and iC  is 

the American option price computed by the analytical approximation.  

[Table 1 is here] 

The parameters used are adopted from Table 2 of Guo, Hung, and So (2009) to 

compute values of American options. As shown, the values of the American options 

from our proposed method are close to those obtained from the LSMC method. The 

differences between the LSMC estimates and ours are generally small. The Static 

Hedging Diff is typically smaller than the BAW Diff in all cases. The RMS calculated 

from our proposed method is generally smaller than the RMS computed from the 

quadratic approximation provided by Guo, Hung, and So (2009), which demonstrates 

that our proposed method can give accurate price estimates for pricing American 

options. The results shown in Table 1 demonstrate that our proposed method can 

provide accurate estimations for evaluating American options. In view of the 

computation time, our proposed method is more numerically efficient than the LSMC 

Based on the results shown in Table 1, these findings demonstrate that our proposed 

method can still give accurate price estimations for pricing American options under 

the stochastic volatility model with correlated double jumps. 
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[Table 2 is here] 

Table 2 gives a comparison of the LSMC method, our proposed model, and the 

quadratic approximation for the stochastic volatility model with independent double 

jumps using parameters adopted from Table 3 of Guo, Hung, and So (2009). The 

differences between the LSMC estimates and our estimates are generally small. The 

RMS computed from our proposed method is similar to those obtained from the 

quadratic approximation provided by Guo, Hung, and So (2009), which demonstrates 

that our proposed method can give accurate price estimates for pricing American 

options. The parameters listed in Bakshi and Cao (2003) and Guo, Hung, and So 

(2009) are used to calculate the numerical results. In general, the RMS calculated 

from our proposed method is small. Based on the results presented in Table 2, our 

proposed method can provide accurate price estimations for evaluating American 

options under the stochastic volatility model with independent double jumps. 

 [Table 3 is here] 

Based on the specification of volatility jumps ( 0v = ), our proposed model 

reduces to the stochastic volatility model with return jumps that is empirically 

examined in Bakshi, Cao, and Chen (1997) and Bates (1996). The parameters used 

are adopted from Table 4 of Guo, Hung, and So (2009). As shown in Table 3, the 

differences between the LSMC estimates and our estimates are small. The American 

option prices acquired from our proposed method are close to those from the LSMC 

method. The RMS computed from our proposed method is smaller than the RMS 

calculated from the quadratic approximation provided by Guo, Hung, and So (2009). 

Based on the results shown in Table 3, our proposed method can give accurate price 

estimations for evaluating American options under the stochastic volatility model 

with return jumps. 

 [Table 4 is here] 
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Table 4 shows a comparison of the LSMC method, our proposed model, and the 

quadratic approximation for the stochastic volatility model with volatility jumps 

( 0=x ) using parameters adopted from Table 5 of Guo, Hung, and So (2009). The 

differences between the LSMC estimates and our estimates are small. The American 

option prices acquired from our proposed method are close to those from the LSMC 

method. In general, the RMS calculated from our proposed method is small. These 

findings demonstrate the accuracy of our proposed model for pricing American 

options. 

 

V. Conclusions 

Although most of the previous work has been done for pricing American options 

under the Black-Scholes framework, analytical pricing models of American options 

under stochastic volatility and double jump processes are relatively scarce. More 

importantly, incorporating stochastic volatility and double jump processes are 

provided to improve pricing errors in the earlier empirical studies. In this article, we 

described the application of a static hedging method to obtain efficient analytic 

formulae for pricing American options on processes permitting stochastic volatility 

and double jumps in order to illustrate its generality, and the general Static Hedging 

approximations are provided. This approximation scheme is a generalization of the 

static hedge portfolio approach of Derman, Ergener, and Kani’s approach. 

Comparisons with the least-squares Monte Carlo approach and the quadratic 

approximation method show that the general accelerated static hedge approximations 

scheme is accurate and efficient in pricing American options with stochastic volatility 

and double jumps. Our proposed model introduces a new direction for pricing 

American options. Given the generalization of the stochastic volatility model with 

double jumps, our proposed model can serve as a convenient tool to evaluate 



16 
 

American options. Furthermore, our proposed model can be extended to more 

complicated models. For example, it is possible to add the stochastic interest rate into 

our pricing model in the future. 
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Appendix A 

Stochastic Volatility Model with Independent Double Jumps 

The characteristic function of the state density has the same functional form as in Eq. 

(7). However, the component function ( ; )M T   is somewhat different than Eq. 

(A1). 

( )( ; ) ( ) x
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( )
2 2( 1)V V Vi i i       − − −                  (C3) 

V Vb i    + −                        (C4) 

q b + ( 1) vi i  − .                       (C5) 
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Tables 

Table 1  Comparisons of American Call Options: Correlated Double Jumps 

 

 

 

 

25.0=T  

 

S  
Static 

Hedging 

LSMC 

American 
(s.e.) 

BAW 

American 

Static 

Hedging 

Diff 

BAW 

Diff 

European 

Option 

80 1.249 1.287 0.033 1.247 0.038 0.040 1.246 

90 3.459 3.517 0.053 3.454 0.058 0.063 3.451 

100 7.804 7.858 0.079 7.794 0.054 0.064 7.786 

110 14.311 14.351 0.069 14.286 0.040 0.065 14.268 

120 22.341 22.362 0.051 22.288 0.021 0.074 22.249 

RMS 0.0245%  0.0277%  

Note: 100=K , 06.0=r , 0.06q = , 0.49V = , 0.0968V = , 1.0−= , 

, 1.64x v = , 03.00 −= , 
, 7.87x v = − , 

, 0.22x v = , 0.0036v = , 0.61V = , and 

5.06V = . 
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Table 2  Comparisons of American Call Options: Independent Double Jumps 

 

 

 

 

25.0=T  

 

S  
Static 

Hedging 

LSMC 

American 
(s.e.) 

BAW 

American 

Static 

Hedging 

Diff 

BAW 

Diff 

European 

Option 

80 1.046 1.049 0.009 1.049  0.003 0.000  1.045 

90 3.416 3.425 0.018 3.419  0.009 0.006  3.410 

100 7.870 7.877 0.019 7.863  0.007 0.014  7.843 

110 14.324 14.287 0.039 14.274  -0.037 0.013  14.232 

120 22.2977 22.171 0.027 22.145  -0.127 0.026  22.064 

RMS 0.0011%  0.0002%  

Note: 100=K , 06.0=r , 0.06q = , 0.49V = , 0.1623V = , 31.0−= , 

87.0=x , 014.0−=x , 04.0=x , 2.43v = , 0.0036v = , 0.54V = , and 

3.02V = .  
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Table 3  Comparisons of American Call Options: Stochastic Volatility with Jump in Return 

 

 

 

 

25.0=T  

 

S  
Static 

Hedging 

LSMC 

American 
(s.e.) 

BAW 

American 

Static 

Hedging 

Diff 

BAW 

Diff 

European 

Option 

80 1.868 1.893 0.038 1.866 0.025 0.027 1.862 

90 4.603 4.660 0.082 4.594 0.057 0.066 4.585 

100 9.206 9.206 0.109 9.200 0.000 0.006 9.181 

110 15.648 15.611 0.063 15.572 -0.037 0.039 15.537 

120 23.440 23.350 0.079 23.271 -0.090 0.079 23.207 

RMS 0.0069%  0.0084%  

Note: 100=K , 06.0=r , 0.06q = , 0.49V = , 0.125V = , 0.16 = − , 3.05x = , 

0.03x = − , 0.19x = , 0v = , 0v = , 0.41V = , and 3.92V = .  
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Table 4  Comparisons of American Call Options: Stochastic Volatility with Jump in Volatility 

 

 

 

 

25.0=T  

 

S  
Static 

Hedging 

LSMC 

American 
(s.e.) 

BAW 

American 

Static 

Hedging 

Diff 

BAW 

Diff 

European 

Option 

80 1.366  1.420 0.031 1.369 0.054 0.051 1.363 

90 3.948  3.983 0.053 3.945 0.035 0.038 3.932 

100 8.506  8.498 0.056 8.466 -0.008 0.032 8.439 

110 14.967  14.882 0.067 14.817 -0.085 0.065 14.766 

120 22.948  22.652 0.104 22.564 -0.296 0.088 22.472 

RMS 0.0344%  0.0286%  

Note: 100=K , 06.0=r , 0.06q = , 0.49V = , 0.189922V = , 0.26 = − , 

0x = , 0x = , 0x = , 1.36v = , 0.0016v = , 0.53V = , and 2.58V = .  

 

 

 

 

 

 

 

 

 

 

 

 

 


